
Nazeli Melikyan is PhD student of Microelectronic Circuits
and Systems Chair of National Polytechnic University of
Armenia, E-mail: nazeli@synopsys.com.

Method of Statistical Timing Analysis with Uncertainty
Nazeli Melikyan

Abstract – Static timing analysis is a critical step in design of
digital integrated circuits. Technology and design trends have
led to significant increase in environmental and process
variations which need to be incorporated in static timing
analysis. This paper presents a new static timing analysis
technique considering uncertainty. This new method is more
efficient as its models arrival times as cumulative density
functions and delays as probability functions.
 Keywords – static timing analysis, uncertainty, density
function.

I. Introduction

Static timing analysis (STA) is critical to the
measurement and optimization of the circuit
performance before its manufacture.
The timing or performance of the chip is heavily
dependent on the manufacturing process variations (e.g.
Vt, Length, etc.) and design environment variations (e.g.
VDD and temperature variations, noise impact on
timing, etc.). As the feature sizes decrease, the ability to
control the manufacturing spread or accuracy of a given
feature size is also decreasing. Along with increased
process variations, the uncertainty caused by design is
also increasing. The increase of uncertainty in design is
caused by increase of power supply and temperature
variations and interconnect loading uncertainty such as
coupling noise impact on timing.
Design variations or uncertainty in static timing analysis
is typically handled in two broad ways. The first set of
techniques handle variations by worst casing the circuit
response. In such a scenario, static timing is performed
at various design corners (e.g. fast, slow and nominal
design corner).
Another method to handle variations in timing is to
perform statistical timing analysis [1,2].
This paper presents a new statistical timing analysis
technique. The delay and arrival times in the circuit are
modeled as random variables. The arrival times are
modeled as Cumulative Probability Distribution
Functions and the gate delays are modeled as Probability
Density Functions. This leads to efficient expressions for
both max and addition operations, the two key functions
in both regular and statistical timing analysis.

II. Statistical Timing Analysis

The problem in deterministic static timing analysis is to
compute arrival times at the output nodes. Arrival times
at the input and delay of the gates are specified as
deterministic numbers. In case of statistical timing
analysis, the arrival times and delays of the gates are
specified as distributions. In general, the distribution of
delays of the gates can take any form (i.e. normal,
uniform, etc.). The problem in statistical timing analysis
is to compute distribution of arrival times at the
intermediate nodes and the output nodes. Given the
required arrival time and distribution of output arrival
times, critical paths and slack distributions can be
computed for a given probability or confidence level.
Timing analysis is performed by levelizing the circuit.
The arrival time at the input is propagated through the
gates at each level till it reaches the output. Propagating
the arrival times through a gate is a key function in static
timing. Consider a two input gate shown in Figure 1.

Figure 1: A gate with output o and inputs i and j.

In deterministic static timing analysis, arrival time
at output node o is given by:

Computation of max and addition is straight forward in
regular timing analysis. In the proposed approach arrival
times are modeled as cumulative density functions and
the delays are modeled as probability density functions.

Figure 2: Arrival times are modeled as Cumulative Probability

Density Functions.

𝐴𝐴𝑗𝑗

Ti

 𝐴𝐴𝑜𝑜
𝑜𝑜

𝑗𝑗

𝑖𝑖

Dio:Delay from Input Node i to Output node o
Djo:Delay from Input Node j to Output node o

𝐴𝐴𝑜𝑜 = max�𝐴𝐴𝑖𝑖 + 𝐷𝐷𝑖𝑖𝑜𝑜,𝐴𝐴𝑗𝑗 + 𝐷𝐷𝑗𝑗𝑜𝑜� (1)

Arrival

Time t

Prob.
(Value is
less than
equal to
Time)

mailto:nazeli@synopsys.com

III. Results

By the proposed method of Statistical Timing Analysis
for evaluation the arbitrator circuit has been chosen for
the research, which is widely used in electronics (Fig. 3).
It is mainly used in asynchronous circuits. During
asynchronous requests, the sequence of implementing
these requests is selected by means of this circuit.
Therefore arbitrator circuit prevents the occurrence of
actions at a time when not permitted in the given system.
Thus it can be assumed that the arbitrator circuit
significantly reduces the probability of having
metastability. Preference encoder is used in the arbiter
circuit, which enables defining the preferences of
requests.

Figure 3: Functional circuit of an arbitor

Behavioral description scheme
Behavioral description has been performed by Verilog
hardware description language. Below are behavioral
descriptions of an arbitrator.

//--
// A four level, round-robin arbiter.
//--
module arbiter (
 clk,
 rst,
 req3,
 req2,
 req1,
 req0,
 gnt3,
 gnt2,
 gnt1,
 gnt0

);
// --------------Port Declaration-----------------------
input clk;
input rst;
input req3;
input req2;
input req1;
input req0;
output gnt3;
output gnt2;
output gnt1;
output gnt0;

//--------------Internal Registers----------------------
wire [1:0] gnt ;
wire comreq ;
wire beg ;
wire [1:0] lgnt ;
wire lcomreq ;
reg lgnt0 ;
reg lgnt1 ;
reg lgnt2 ;
reg lgnt3 ;
reg lasmask ;
reg lmask0 ;
reg lmask1 ;
reg ledge ;

//--------------Code Starts Here-----------------------
always @ (posedge clk)
if (rst) begin
 lgnt0 <= 0;
 lgnt1 <= 0;
 lgnt2 <= 0;
 lgnt3 <= 0;
end else begin
 lgnt0 <=(~lcomreq & ~lmask1 & ~lmask0 & ~req3 &
~req2 & ~req1 & req0)
 | (~lcomreq & ~lmask1 & lmask0 & ~req3 &
~req2 & req0)
 | (~lcomreq & lmask1 & ~lmask0 & ~req3 &
req0)
 | (~lcomreq & lmask1 & lmask0 & req0)
 | (lcomreq & lgnt0);
 lgnt1 <=(~lcomreq & ~lmask1 & ~lmask0 & req1)
 | (~lcomreq & ~lmask1 & lmask0 & ~req3 &
~req2 & req1 & ~req0)
 | (~lcomreq & lmask1 & ~lmask0 & ~req3 & req1
& ~req0)
 | (~lcomreq & lmask1 & lmask0 & req1 & ~req0)
 | (lcomreq & lgnt1);
 lgnt2 <=(~lcomreq & ~lmask1 & ~lmask0 & req2 &
~req1)
 | (~lcomreq & ~lmask1 & lmask0 & req2)
 | (~lcomreq & lmask1 & ~lmask0 & ~req3 & req2
& ~req1 & ~req0)

 | (~lcomreq & lmask1 & lmask0 & req2 & ~req1
& ~req0)
 | (lcomreq & lgnt2);
 lgnt3 <=(~lcomreq & ~lmask1 & ~lmask0 & req3 &
~req2 & ~req1)
 | (~lcomreq & ~lmask1 & lmask0 & req3 &
~req2)
 | (~lcomreq & lmask1 & ~lmask0 & req3)
 | (~lcomreq & lmask1 & lmask0 & req3 & ~req2
& ~req1 & ~req0)
 | (lcomreq & lgnt3);
end

//--
// lasmask state machine.
//--
assign beg = (req3 | req2 | req1 | req0) & ~lcomreq;
always @ (posedge clk)
begin
 lasmask <= (beg & ~ledge & ~lasmask);
 ledge <= (beg & ~ledge & lasmask)
 | (beg & ledge & ~lasmask);
end

encoder encoder (
 .lgnt0(lgnt0), .lgnt1(lgnt1),
.lgnt2(lgnt2), .lgnt3(lgnt3),
 .req0(req0), .req1(req1), .req2(req2),
.req3(req3),
 .lgnt(lgnt), .lcomreq(lcomreq)
);
//--
// lmask register.
//--
always @ (posedge clk)
if(rst) begin
 lmask1 <= 0;
 lmask0 <= 0;
end else if(lasmask) begin
 lmask1 <= lgnt[1];
 lmask0 <= lgnt[0];
end else begin
 lmask1 <= lmask1;
 lmask0 <= lmask0;
end

assign comreq = lcomreq;
assign gnt = lgnt;
//--
// Drive the outputs
//--
assign gnt3 = lgnt3;
assign gnt2 = lgnt2;
assign gnt1 = lgnt1;
assign gnt0 = lgnt0;

endmodule

Below is the behavioral description of preference
encoder, used in the arbitrator.

module encoder
(lgnt0,lgnt1,lgnt2,lgnt3,req0,req1,req2,req3,
lcomreq, lgnt);
input req3;
input req2;
input req1;
input req0;
input lgnt0 ;
input lgnt1 ;
input lgnt2 ;
input lgnt3 ;
output lcomreq;
output [1:0] lgnt;
//--
// comreq logic.
//--
assign lcomreq = (req3 & lgnt3)
 | (req2 & lgnt2)
 | (req1 & lgnt1)
 | (req0 & lgnt0);

//--
// Encoder logic.
//--
assign lgnt = {(lgnt3 | lgnt2),(lgnt3 | lgnt1)};

endmodule

Circuit simulation has been implemented by means of
VCS tool. Figure 4 presents the diagrams of the obtained
signals.

Figure 4: Signals diagram of an arbiter

Statistical static timing analysis of the circuit
The circuit has been synthesized by all contemporary
low power design methods. All the circuits have been
synthesized by SAED32 nm technology library, which
enables the use of all low power design methods. As the

main operating power supply for all circuits, 0,95V was
chosen. The same space limit of 150µm2 has been set for
all circuits, which allowed to examine the circuits the
same way in terms of the surface. Synchro signal
frequency was chosen 50MHz.
By means of statistical static timing analysis method, the
total statistical delay of elements from req0 input to gnt0
output has been computed for all circuits.
Below are all the applied methods and obtained circuits,
static and dynamic power consumption and the total
statistical delay of elements from req0 input to gnt0
output has been computed for all circuits.

Circuit Synthesis by Classical Method
In this case the Design Compiler synthesis tool was
given the characterized library for 0,95V.

Figure 5: Synthesized circuit of an arbiter by classical
method

Figure 6: Statistical delay of an arbiter from req0 input

to gnt0 output in case of classical method

In this case the circuit consumes 32,3µW power, average
value of statistical delay from req0 input to gnt0 output
is 270ps, and the standard deviation is 2,345ps.

By scaling of circuit synthesis voltage
In this case, voltage scaling has been implemented, i.e.
Design Compiler synthesis tool was given the
characterized library for 0,7V.

Figure 7: Synthesized circuit of an arbiter by voltage
scaling

Figure 8: Statistical delay of an arbiter from req0 input

to gnt0 output in case of voltage scaling method

In this case the circuit consumes 13.4µW power, average
value of statistical delay from req0 input to gnt0 output
is 410ps, and the standard deviation is 2.3ps.

The research is supported by SCS MES RA, within the
frames of joint Armenian-Belarusian research project
No: 13РБ-045.

References

1. Orshansky M., Nassif S. Design for
Manufacturability and Statistical Design. - Springer,
2007. - 330 p.

2. Wong B., Mittal A., Cao Y., Starr Greg W. Nano-
CMOS Circuit and Physical Design. - Wiley-
Interscience, 2004. - 416 p.

